首页 文章推荐 家电百科 实时讯息 常识

首页 实时讯息

江门中微子实验运行,助力破解粒子物理和宇宙学前沿交叉热点难题

0次浏览     发布时间:2025-08-26 08:48:00    

8月26日,已完成2万吨液体闪烁体灌注的江门中微子实验(JUNO)正式运行取数。经过十余年的准备和建设,JUNO成为国际上首个运行的超大规模和超高精度中微子专用大科学装置。“完成JUNO探测器灌注并开始运行取数,是一个历史性的里程碑。它将使我们能够回答关于物质和宇宙本质的基本问题。”JUNO合作组发言人王贻芳表示。

JUNO在试运行期间首批获取的数据显示,其探测器关键性能指标全面达到或超越设计预期,这使JUNO能够着手解决粒子物理学领域未来十年内的一个重大问题:中微子质量排序——即第三种中微子(ν₃)是否比第二种(ν₂)更重。

历经十年建设,可捕捉“幽灵粒子”

中微子是构成物质世界的12种基本粒子之三(电子中微子、缪中微子和陶中微子)。中微子的质量非常轻,以接近光速运动。宇宙中充斥着大量的中微子,大部分为宇宙大爆炸的残留。

中微子无处不在,恒星内部的核反应、超新星的爆发、核反应堆的运行,以至于岩石中的放射性物质衰变,都产生大量中微子。但是,由于中微子与普通物质的相互作用很弱,它们可以轻松穿过人体、建筑甚至整个地球而不被任何物质吸收,不容易被检测到。因此,中微子也被称为“幽灵粒子”。

JUNO探测器位于广东省江门市附近的地下700米处,可以探测53公里外台山和阳江核电站产生的中微子,并以前所未有的精度测量它们的能谱。与国际同类实验相比,JUNO对质量顺序的测定不受地球物质效应和其他未知中微子振荡参数的影响,并将显著提高6个中微子振荡参数中的三个参数的精度。JUNO实验使科研人员能够对来自太阳、超新星、大气和地球的中微子开展前沿研究,并将开启探索未知物理的新窗口,包括对不活跃中微子和质子衰变的搜寻。

江门中微子实验由中国科学院高能物理研究所于2008年提出构想,2015年启动隧道和地下实验室建设。2021年12月,完成实验室建设并开始了探测器在地下实验室的安装建设,2024年12月,探测器主体建设完成并开始灌注超纯水与液体闪烁体。

在灌装过程中,项目团队首先在45天内完成超过6万吨超纯水的灌注,将内外有机玻璃球的液位差控制到厘米量级,流量偏差不超过0.5%,有力保障了探测器主体结构的安全稳定。随后历经半年的精细操作,将2万吨液体闪烁体精准注入直径35.4米的有机玻璃球内,并同步完成原有纯水的置换。尤为关键的是,超纯水与液体闪烁体的超高洁净度、透明度和极低放射性本底等特殊要求全部得到满足。与此同时,项目团队完成了探测器的调试优化,确保了探测器在灌注完成后立刻进入正式运行取数阶段。

JUNO设计使用寿命可达30年

JUNO的核心探测器为有效质量达2万吨的液体闪烁体探测器(中心探测器),安置于地下实验大厅44米深的水池中央。直径41.1米的不锈钢网壳作为主支撑结构,承载了包括35.4米直径的有机玻璃球、2万吨液体闪烁体、2万只20英寸光电倍增管、2.5万只3英寸光电倍增管以及前端电子学、电缆、防磁线圈和隔光板等众多关键部件。遍布探测器内壁的光电倍增管协同工作,探测中微子与液闪相互作用产生的闪烁光,并将其转换为电信号输出。

中心探测器内部的有机玻璃球及光电倍增管。中国科学院高能物理所供图

JUNO总工程师马骁妍表示,建设JUNO是一段充满非凡挑战的旅程。这不仅需要新的想法和技术,还需要多年的精心规划、测试和坚持。满足材料纯度、稳定性和安全性等严格要求,需要数百名工程师和技术人员的奉献。“团队协作使这个大胆的设计变成了一个功能齐全的探测器,如今它已经准备好为中微子世界打开一扇新的窗口。”

JUNO的设计使用寿命可达30年,后期可升级改造为世界最灵敏的无中微子双贝塔衰变实验。这样的升级可探测中微子绝对质量,检验中微子是否为马约拉纳粒子,从而解决粒子物理、天体物理和宇宙学的前沿交叉热点难题,并深刻影响人们对宇宙的理解。

新京报记者 张璐

编辑 张磊 校对 贾宁